
Abstract The b/c intron of the mitochondrial nad1 gene,
was sequenced to characterize the indel region of pon-
derosa pine, Pinus ponderosa. The sequence in pondero-
sa pine was aligned with the sequence in Scots pine, 
Pinus sylvestris, to design seven primers that are useful
for sequencing and for revealing size variation in ampli-
fied fragments in ponderosa pine, Scots pine, and limber
pine, Pinus flexilis. These primers reveal variability in
all three species, and the pattern of variability within
ponderosa pine is described by a preliminary survey. The
indel region of ponderosa pine contains three distinct el-
ements with lengths of 31, 32, and 34 bp. 
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Introduction

The organellar genomes of many conifers are ideally
suited for studies of gene flow and population structure,
fas they have contrasting patterns of inheritance. For the
majority of species within the genus Pinus, the mito-
chondrial DNA (mtDNA) shows maternal inheritance,
and the chloroplast DNA (cpDNA) is paternally inherit-
ed (Neale et al. 1986, 1989; Wagner et al. 1987; Neale
and Sederoff 1989; Strauss et al. 1989, 1993; Wagner
1992; Strauss et al. 1993; Dong and Wagner 1993, 1994;
Hong et al. 1993). Exceptions to the general pattern of
maternal inheritance of mtDNA have been reported in
Pinus monticola and Pinus banksiana (Bruns and

Owens 1989; Wagner et al. 1991). Because the pollen of
pines is dispersed by wind, cpDNA has the potential for
high levels of gene flow. In contrast, the mtDNA of
pines has a low potential for dispersal, for seeds are typ-
ically blown by the wind for less than 100 m. Pines with
seeds dispersed by birds have a greater potential for
mtDNA gene flow (Tomback and Linhart 1990), but
even in these species, the potential for gene flow of
mtDNA is much lower than for cpDNA.

The disparate potentials for gene flow in mtDNA and
cpDNA will produce contrasting patterns of population
structure. For example, within a population of ponderosa
pine, mtDNA is spatially structured, revealing open-
pollinated maternal families, while the spatial structure
of cpDNA is homogenized by the dispersal of pollen
(Latta et al. 1998). Within the secondary contact zone
between Pinus ponderosa ponderosa and Pinus pondero-
sa scopulorum, mtDNA variation reveals a sharp cline,
while the cline of cpDNA is attenuated by greater gene
flow (Latta and Mitton 1999). Finally, allozymes and
cpDNA reveal little population structure in limber pine,
Pinus flexilis (Latta et al. 1997), but mtDNA reveals that
large geographic areas are marked by diagnostic mtDNA
haplotypes (Mitton et al. 2000).

Currently, the paucity of polymorphic markers in
plant mtDNA restricts the study of the geographic varia-
tion of this component of the genome (Schaal et al.
1998). To better understand the variation among mito-
types in ponderosa pine and limber pine, and in the hope
of identifying sequence variation that would support
phylogeographies, we have sequenced the b/c intron of
nad1. Size variation in this intron has been used to de-
scribe the population structure in both ponderosa pine
and limber pine (Latta and Mitton 1997, 1999; Latta et
al. 1998; Mitton et al. 2000). These new primers make
size variation more apparent, so that surveys can be con-
ducted with agarose gels, and can be used to sequence
this region of approximately 2000 bp. 
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Materials and methods

Total genomic DNA was extracted from needle tissue with the
DNAeasy Plant Mini Kit (QIAGEN Inc.; Santa Clarita, Calif.).
Amplifications were conducted in a total volume of 25 µl using:
50 mM KCl, 10 mM Tris-HCl (pH 8.3), 0.01% gelatin, 1.25–
3.00 mM MgCl2, 200 µM of dNTPs, 1 unit of Taq polymerase, 
0.3 µM of each primer, approximately 100 ng of template DNA
and water to the final volume. PCR-cycling conditions consisted
of an initial denaturing step of 94°C for 1 min followed by 30 cy-
cles of 45 s at 95°C, 45 s at 55° to 59.5°C and 2 min at 72°C. A fi-
nal elongation step of 7 min at 72°C ended the cycle. The PCR
product was cleaned using the QIAquick PCR purification kit
(QIAGEN Inc.; Santa Clarita, Calif.). Both strands of the fragment
were cycle-sequenced with the original primers using ABI Big
Dye terminator chemistry and visualized on an ABI Prism model
377 automated DNA sequencer (MCDB Sequencing Facility; Uni-
versity of Colorado). The nad1b2f-nad1c3r region was sequenced
using the methods described above, but the template for the reac-
tion was the fragment amplified with the nad1b1f and nad1c1r
primers.

Results

We began with the nad1b and nad1c primers (Demesure
et al. 1995), which are anchored in the b and c exons. In
ponderosa pine, these primers amplify a fragment of ap-

proximately 2000 bp. We sequenced inward with both
of these primers, and designed an internal set of primers
(nad1b1f, nad1c1r) from sequences that were identical
in ponderosa pine and Pinus sylvestris (GenBank acces-
sion # AJ223312). We repeated the process to design a
second pair of internal primers, nad1b2f and nad1c3r.
The sequence for the intron in P. ponderosa has been
deposited in GenBank (accession # AF231325). Addi-
tional primers (nad1c2r, nad1b3f, nad1b4f) were de-
signed to amplify fragments of appropriate size for se-
quencing, or to detect size differences among amplified
fragments. The sequences of these primers are listed in
Table 1 and their positions in the intron are presented in
Fig. 1. 
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Fig. 1 The positions of nested primers within and beside the in-
tron between exons b and c in the mitochondrial Nad1 of pondero-
sa pine and Scots pine, and the diversity of haplotypes found in a
preliminary survey of ponderosa pine. Numbers above the repeat
blocks correspond to the 5′ position of the particular repeat block
in the consensus strand of the ponderosa pine sequences (the
alignment is available from the authors upon request). Sequences
are identified by the geographic region in which they were ob-
served. Abbreviations are as follows: AZ = Arizona, BC = British
Columbia, CA = California, CO = Colorado, MT = Montana, MX =
Mexico, NV = Nevada and SD = South Dakota



The indel region of ponderosa pine is between the
primers nad1b2f and nad1c3r, which produces fragments
ranging in size from 751 to 922 bp. The diversity of ge-
notypes revealed in our preliminary survey demonstrates
the utility of these primers for revealing genetic variabil-
ity. Although sequence variation is rare (three nucleotide
substitutions), variation in repeated elements is common.
The various haplotypes are represented schematically
(Fig. 1), with R1 and R2 representing repeats of 34 and
32 bp, respectively, and D1 representing a 31-bp frag-
ment. In these preliminary data, all trees sampled in Cal-
ifornia and British Columbia are distinguished by dele-
tion of the R1 repeat at base 1118. 

In limber pine, the nad1b2f and nad1c3r primers pro-
duce a fragment of approximately 300 bp, and this re-
gion does not contain the indel region detected as RFLPs
in surveys of the population structure of limber pine
(Latta and Mitton 1997; Mitton et al. 2000). Instead, the
indel region is between the primers nad1b4f and
nad1c1r, which amplify fragments of 500 to 700 bp, de-
pending on the mitotype. We have not yet explored the
structure of this region through sequencing.

Discussion

These primers work in P. ponderosa, P. flexilis and P.
sylvestris, and some of them work in Pinus edulis, Picea
engelmanii and Pinus glauca. Three of the primers
(nad1b1f, nad1b2f, and nad1c2r) align perfectly with the
sequences in Picea abies (Parducci and Szmidt 1999;
GenBank Accession #AF142641–2). 

The nad1 b/c intron should serve as a useful molecu-
lar marker in population genetic surveys, for it has size
variants that reveal population structure across the range
of both P. ponderosa and P. flexilis. Previously, size vari-
ation in the nad1b/c intron was detected by amplifying
the entire intron, cutting the fragment with RsaI, sorting
the fragments on a polyacrylamide sequencing gel, and
revealing fragments by silver staining (Latta and Mitton
1997, 1999; Latta et al. 1998; Mitton et al. 2000). The
new primers amplify smaller fragments, which allow the
size variants to be distinguished on agarose gels.
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Table 1 Nested primers for the intron between exons b and c of the mitochondrial NAD1 in ponderosa pine, P. ponderosa, limber pine,
P. flexilis, and Scots pine, P. sylvestris

Primer (f) Sequence Primer (r) Sequence

NAD1Ba 5′ - GCATTACGATCTGCAGCTCA - 3′ NAD1Ca 5′ – GGAGCTCGATTAGTTTCTGCC - 3′
NAD1B1f 5′ – ATGCCGCCCGTTTCCATTTC – 3′ NAD1C1r 5′ – TGCTGCAAAAGGGTTAGGGGG – 3′
NAD1B 2f 5′ – CGAGGGGTAGGTATCGGTCCGA – 3′ NAD1C2r 5′ – GCATGCTTACTCACCCTCTCCCG – 3′
NAD1B 3f 5′ – CTTTTTGGTTTGCTTATTGGGTGGGGGG – 3′ NAD1C3r 5′ – TTTTAAGTGACTCGCCCGACC – 3′
NAD1B 4f 5′ – CGGGCGAGTCACTTAAAAGTCAC – 3′

a From Demesure et al. (1995)
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